

Heterocyclic Letters Vol. 9| No.2|177-184|Feb-April |2019 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

GREEN SYNTHESIS OF 1, 2, 4-TRIAZINE-2-SUBSTITUTED BENZAMIDE DERIVATIVES

V. Anitha Rani^{*1} and Y. Bharathi Kumari²

 Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad
Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad (A.P), India - 500 085. E-mail ID: <u>anitha1810@gmail.com</u>

Abstract

Green synthesis of (Z)-N-5-(benzylidene/substituted benzylidene)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine-2-substituted benzamide derivatives have been developed by reaction of (Z)-4-(benzylidene / substituted benzylidene)-2-(methyl/phenyl)-oxazol-5(4H)ones **3(a-1)** with hydrazine hydrate to form (Z)-N-(3-hydrazinyl-3-oxo-1-phenylprop-1-en-2yl)acetamides or benzamides **4(a-1)**. Then, **4** was reacted with Schiff base **5** in the presence of L-tyrosine in ethanol for 1 h under reflux condition.

Keywords: Green synthesis, Schiff bases, L-tyrosine and 1, 2, 4-triazine

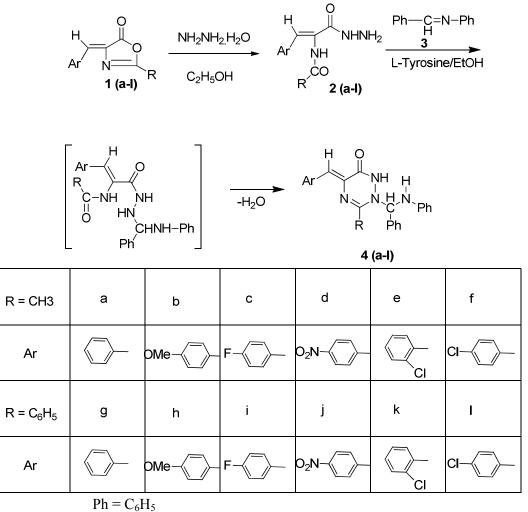
Introduction

1,2,4-Triazinones constitute valuable heterocycles as scaffolds for combinatorial chemistry. Among the different 1,2,4-triazinones described in the literature, only a few are substituted 1,2,4-triazin-6-ones (1). An efficient control of different substituent's within the heterocycle is needed to generate the largest molecular diversity.

1,2,4-triazin-6-ones are a very important class of heterocyclic compounds that show a wide variety of applications in both pharmaceutical and agrochemical fields. 1,2,4-Triazin-6-ones have exhibited anticancer^I, antitumour^{II}, antibacterial and antifungal activities^{III}, antimicrobial^{IV}, biological activities of cell line cytotoxicity^V, antimalarials^{VI}, antivirals^{VII} and herbicides^{VIII}.

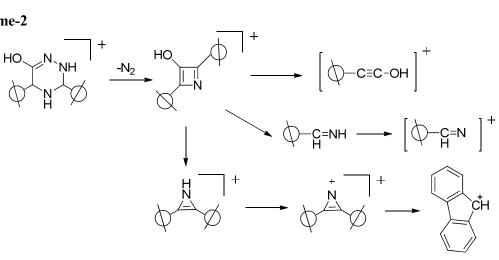
1,2,4-triazine ring system is very significant for its applications as corrosion inhibitors,^{IX} additives to photographic development baths uv absorbers for textiles, plastic resins and papers^X and indicators for volumetric analysis of aminoacids in acetonitriles^{XI}.

1,2,4-Triazine-6-ones are less known monohydroxy 1,2,4-triazines. Only three approaches as mentioned in chapter-2 for the synthesis of 1,2,4-triazine-6-ones have been published so far. The first approach was achieved by condensation of hydrazine, considered as 1,2-dinucleophile on a 1,4-dielectrophile^{XII}. The second approach is cyclocondensation of an α -aminohydrazide (1,5-dinucleophile) and an orthoester as 1,1-dielectrophile^{XIII}. Recently


sanjere et al^{XIV} reported the use of N-thioacyclopthalimide as 1,1-electrophile in a reaction with α -amino hydrazides. The third approach^{XV} is cyclocondensation of nitrilimines as 1,3-dinucleophiles on α -aminoesters as 1,3-dielectrophiles.

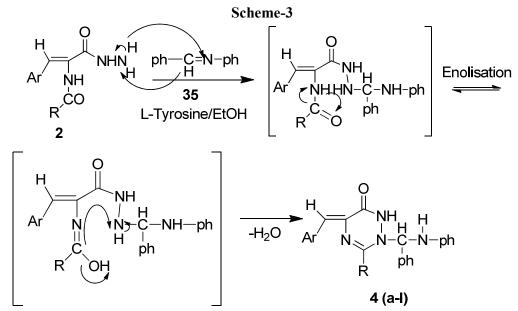
This prompted us to synthesize derivatives of (Z)-N-5-(benzylidene/substituted benzylidene)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine-2-substituted benzamide derivatives.

Results and Discussion


As far as the literature survey is concerned there is no report that describes the synthesis of (Z)-N-5-(benzylidene/substituted benzylidene)-2-N-(benzamide/substituted benzamide)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine derivatives 4(a-l) from (Z)-N-(3-hydrazinyl-3-oxo-1-(phenyl/substituted phenyl)prop-1-en-2-yl acetamides or benzamides 2(a-l) and schiff base 3 in ethanol in the presence of L-Tyrosine as catalyst. (Z)-N-5-(benzylidene/substituted benzylidene)-2-N-(benzamide/substituted benzamide)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine derivatives 4(a-l) have been synthesized by one-pot synthesis through synthetic sequence (Scheme-1). Initially oxazolin-5-ones 1(a-l) were subjected to ring opening reaction with hydrazine hydrate in ethanol medium at RT for 30 min to produce (Z)-N-(3-hydrazinyl-3-oxo-1-(phenyl/substituted phenyl) prop-1-en-2-yl- acetamides/benzamides 2(a-l). Finally, 2(a-l) were made to react with schiff base (3) in the presence of L-tyrosine in ethanol medium for 1 h under reflux condition to yield 4(a-l) with 85% yield, whose structure has been established on the basis of spectral data. The IR spectrum of the compound 4(a) confirms the formation of 1, 2, 4triazine-6-one derivatives by the appearance of absorptions at 3360 cm⁻¹ (NH), 2197 cm⁻¹ ¹(Ar) and 1681 cm⁻¹(C=O). The ¹H-NMR spectra showed the signals at δ 2.9 indicating methyl protons, along with trans olefinic proton observed at δ 11 and aromatic protons at δ 7.1-8.8.Signals at δ 3.8 and δ 5.2 indicate two –NH protons which were D₂O exchangeable . ¹³C NMR spectrum showed signals at $\delta 20$ (CH₃) , $\delta 115$ (CH=C), $\delta 127$ (Ar C=C), δ130 (HC=C), δ137 (CH-Ar), δ139 (=CH-Ar), δ140(-C(CH3)),δ159 (-CO NH), $\delta 164$ (N-C (Ar)-N). Further the mass spectrum of the compound 4(a) showed the molecular ion peak at m/z 382 corresponding to molecular weight of the compound 4(a). To test its generality the method has been extended to twelve other derivatives and in the all cases the corresponding (Z)-N-5- (benzylidene/ substituted benzylidene)-2-N-(benzamide /substituted benzamide)-3--(methyl/ phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4triazine derivatives 4(a-l) were isolated in good yields. The synthesis of 4(a-l) in presence of L-tyrosine produced high yields, purities and less time consuming.

Scheme-1

The fragmentation of all compounds follow the pattern as given in the **scheme-2**, where the fragmentation starts with the loss of nitrogen. Thus the structure of all 1, 2, 4-triazine-6-ones 4(a-1) were confirmed.


Scheme-2

V. A. Rani et al. / Heterocyclic Letters Vol. 9| No.2|177-184|Feb-April| 2019

Mechanism

The mechanism of the formation of (Z)-N-5-(benzylidene/substituted benzylidene) -2-N-(benzamide /substituted benzamide)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4triazine derivatives 4(a-1) can be assigned as follows. Initially when (Z)N-(3-hydrazinyl-3oxo-1-(phenyl/substituted phenyl) prop-1-en-2-yl-acetamides 2(a-1) were treated with the schiff base which is a proton acceptor, accepts proton from NH₂ group of 2(a-1) to produce an unstable intermediate, which in presence of a base undergoes enolisation followed by cyclocondensation and eliminates water molecule to produce the title compounds (Z)-N-5-(benzylidene/substituted benzylidene)-2-N-(benzamide/ substituted benzamide)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine derivatives 4(a-1) scheme-3.The natural aminoacid L-Tyrosine acted as a catalyst in the reaction.

The convertion of **2(a-l)** to produce 1,2,4-triazin-6-ones **4(a-l)** in presence of schiff base and L-tyrosine as a catalyst is confirmed by IR spectra showing the absence of N-H stretching absorptions of the amino group of hydrazine and presence of N-H stretching of amide group which are D₂O exchangeable. The ¹HNMR spectra showed the disappearance of signals for NH₂ protons and appearance signals for N-NH,NH-Ph protons which are D₂O exchangeable along with signals for CH-Ph.¹³C NMR spectra of the compounds **4(a-l)** shows signals for the presence of Ar, C=C, C=O, N-CH₃, C-N and O=C in the structure. Finally the mass spectrum of all the compound confirms the molecular weight of the compound supporting the structure of 1, 2, 4-triazin-6-one derivatives **4(a-l)**.

Experimental:

Melting points are uncorrected and taken in open capillary tubes in sulphuric acid bath. TLC was run on silica gel – G and visualization was done using UV light. IR spectra were recorded using Perkin – Elmer 1000 instrument in KBr pellets. ¹H NMR spectra were recorded in CDCl₃ using TMS as internal standard with 400 MHZ spectrometer. Mass spectra were recorded on Agilent-LCMS instrument under CI conditions and given by Q+1 value only. Compound **1** was prepared by literature method^{XIII}.

General procedure for the Preparation of (Z)-N-(3-hydrazinyl-3-oxo-1-(Phenyl/substituted phenyl) prop-1-en-2-yl acetamides 2 (a-l):

0.1 mol of 4-(benzylidene/substituted benzylidene) -2-methyl oxazolin -5-ones 1(a-l) were dissolved in 50ml of ethanol and treated with 10ml (0.2M) of hydrazine hydrate (99%) in 10ml of ethanol. The mixture was stirred well till the deep yellow colour of the reaction mixture turned light yellow. The compounds (Z)-N-(3-hydrazinyl-3-oxo-1-(phenyl/substituted phenyl) prop-1-en-2-yl-acetamides 2(a-l) separated were filtered and recrystallized from methanol.

Preparation of (Z)-5-(benzylidene/substituted benzylidene)-2-N-(benzamide/substituted benzamide)-3-(methyl/phenyl)-6-oxo-1,2,5,6-tetrahydro-1,2,4-triazine derivatives 4 (a-l). Equimolar quantities of (Z)-N-(3-hydrazinyl-3-oxo-1-(phenyl/substituted phenyl)prop-1-en-2-yl acetamides or benzamides **2(a-l)** (10mM) and N-benzylideneaniline **3** (10mM) were mixed together in 20 ml of ethanol and L-Tyrosine which acts as a catalyst. The mixture was refluxed for 1 h. The path and completion of the reaction was monitored by TLC (solvent system 1:3 EtOAc: Hexane).The reaction mixture was cooled to room temperature and poured into ice-cold water (50 ml).The solid separated out which was collected, washed with water (10 ml) and dried. The product was recrystallised from ethanol to obtain (Z)5-(benzylidene/substituted benzylidene)-2-N-(benzamide/substituted benzamide)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine derivatives **4(a-l)**.

Table-1

Synthesis of 2(a	-I) from	1(a-l)} ar	nd Hydrazin	e hydrate.
~	-,	(,)		

Entry	Starting material	Product	Time (min)	Yield*	M.P(⁰ C) [lit. M.P ^o C]	M. Wt
1	1a	2a	60	80	154-156 [156-158] ¹⁵	219
2	1b	2b	60	80	175-179 [176-180] ¹⁶	249
3	1c	2c	65	78	208-210	237
4	1d	2d	60	80	220-222	264
5	1e	2e	70	75	212-214	253
6	lf	2f	60	80	> 220	253
7	1g	2g	65	81	> 220	281
8	1h	2h	70	80	192-196	311
9	1i	2i	65	82	210-212	299
10	1j	2j	70	82	> 220	326

	V. A. Rani et al. /	Heterocyclic Lette	ors Vol. 9 No.2	177-184 Feb-April 2019	
1k	2k	60	81	220-222	315

11	1k	2k	60	81		220-	-222	315
12	11	21	70	80)	> 22	0	315
Table-2Synthesi	is of 4(a-l) f	rom 2(a-l)}	and	3.	Yiel	4*	M.P(⁰ C)	M. Wt
entry	Starting material	Produc	ι	Time (min)	Y lel	u*	M.P(C)	M. wt
1	2a	4 a		90	85		> 230	382
2	2b	4b		90	84		> 230	412
3	2c	4c		95	80		> 230	400
4	2d	4d		100	85		.>230	427
5	2e	4 e		85	85		180-182	416
6	2f	4f		100	80		170-172	416
7	2g	4g		90	85		192-194	478
8	2h	4h		90	83		> 230	474
9	2i	4i		90	85		>230	462
10	2j	4j		85	84		>230	489
11	2k	4k		90	85		225-227	478
12	21	41		90	85		192-194	478

* Refers to yields of crude products only

(Z)-N-5-(benzylidene/substituted benzylidene)-3-(methyl/phenyl)-6-oxo-1, 2, 5, 6-tetrahydro-1, 2, 4-triazine-2-substituted benzamide derivatives {4(a-l)}:

4a: IR (KBr) cm⁻¹: 3360 (broad, -NH-N), 3313 (broad, -NH), 1680 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.9 (s, 3H, N-CH₃), 3.6 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH, **D₂O exchangeable**) 7.2-8.8 (m, 16H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH, **D₂O exchangeable**).

4b: IR (KBr) cm⁻¹ : 3310 (broad, -NH-N), 3244 (broad, -NH) 1659 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.9 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 3.9 (s, 3H, -CH₃), 5.3 (s, 1H, -NH-CH, **D**₂**O** exchangeable) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, **D**₂**O** exchangeable).

4c: IR (KBr) cm⁻¹: 3440 (broad, -NH), 3250 (broad, -NH), 1710 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.8 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH, D₂O exchangeable) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH, D₂O exchangeable).

1.1

4d: IR (KBr) cm⁻¹: 3480 (broad, -NH), 3250 (broad, -NH), 1720 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.9 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH, D₂O exchangeable) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, D₂O exchangeable).

4e: IR (KBr) cm⁻¹: 3322 (broad, -NH), 3304 (broad, -NH) 1720 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.7 (s, 3H, N-CH₃), 3.4 (s, 1H, -CH), 5.7 (s, 1H, -NH-CH, D₂O exchangeable) 7.0-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH, D₂O exchangeable).

4f: IR (KBr) cm⁻¹: 3334 (broad, -NH), 3283 (broad, -NH), 1712 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 2.8 (s, 3H, N-CH₃), 3.5 (s, 1H, -CH), 5.5 (s, 1H, -NH-CH, D₂O exchangeable) 7.2-8.4 (m, 15H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH, D₂O exchangeable).

4g: IR (KBr) cm⁻¹ : 3380 (broad, -NH), 3360 (broad, -NH), 1710 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.5 (s, 1H, -CH), 5.4 (s, 1H, -NH-CH₃, **D**₂O exchangeable) 7.2-8.6 (m, 21H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, **D**₂O exchangeable).

4h: IR (KBr) cm⁻¹ : 3313 (broad, -NH), 3302 (broad, -NH), 1700 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.5 (s, 1H, -CH), 3.9 (s, 3H, -CH₃), 5.7 (s, 1H, -NH-CH, **D₂O exchangeable**) 7.0-8.4 (m, 20H, Ar-H and s, 1H, =CH-Ar), 11.0 (s, 1H, -NH, **D₂O exchangeable**).

4i: IR (KBr) cm⁻¹: 3342 (broad, -NH), 3330 (broad, -NH), 1722 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.5 (s, 1H, -CH), 5.0 (s, 1H, -NH-CH, **D₂O exchangeable**) 7.2-8.4 (m, 20H, Ar-H and s, 1H, =CH-Ar), 11.2 (s, 1H, -NH, **D₂O exchangeable**).

4j: IR (KBr) cm⁻¹: 3340 (broad, -NH), 3320 (broad, -NH), 1700 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.2 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH, **D₂O exchangeable**) 7.1-8.4 (m, 20H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, **D₂O exchangeable**).

4k: IR (KBr) cm⁻¹ : 3413 (broad, -NH), 3352 (broad, -NH), 1722 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.3 (s, 1H, -CH), 5.3 (s, 1H, -NH-CH, **D**₂O exchangeable) 7.2-8.4 (m, 20H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, **D**₂O exchangeable).

4I: IR (KBr) cm⁻¹ : 3402 (broad, -NH), 3352 (broad, -NH) 1702 (-C=O); ¹H- NMR (400MHz, DMSO-d₆/TMS): δ 3.4 (s, 1H, -CH), 5.5 (s, 1H, -NH-CH, **D₂O exchangeable**) 7.0-8.4 (m, 20H, Ar-H and s, 1H, =CH-Ar), 11.1 (s, 1H, -NH, **D₂O exchangeable**).

Conclusion

Green process for the preparation of moderate anti-biological compounds 4(a-1) has been developed with excellent yields and the evaluation of their anti-microbiological activity is encouraging.

Acknowledgement

Authors are very thankful to the authorities of **Department of Chemistry**, **Institute of Aeronautical Engineering**, **Dundigal**, **Hyderabad** for providing laboratory.

References:

I.	S.A Abubshait, H.A Abubshait J. of chem and phar. Rearch, 2010
II.	Ayman S. Al Hussaini, Elsherbing H. Elsayed and Eman M. Radwan Der. pharma
	<i>chemical</i> , 7(11), (2015), 2014-15.
TTT	\mathbf{D}_{1} M 1 1 0 4 1 0 C 1 1 1 1 1 C K 1 N 1 T K 1 1

- III. Basher M. shaik, Santhosh S. Chose, shankariah G. Konda, Namdev T. Khandare, SanjayA chavan and Bhasker S. Dawane, *Der. Chemical sinica* 2, (2010), 86-91.
- IV. S. A. Abubshait, H.A. Abubshait, Jr. of Applied Sciences, 5(6), (2008). 750-754.
- V. Tomas gucky, Ivetafrysova, Jan Slouka, Mariah Hajduch, Petr Dubak, European

V. A. Rani et al. / Heterocyclic Letters Vol. 9| No.2|177-184|Feb-April| 2019

Journal of Medicinal Chemistry, 44, (2009), 891-900.

- VI. L. March, G. Bajue, J. Lee, K. Wasti, M. Jouillie, J. med chem. 19, (1976), 845
- VII. Hegarty, Charls paul, Pietry K.S Helen US patent 3980774
- VIII. J.H. Aruik, D.L. Hyzak and R.L. Zimclahl, Weed.Sci 21, (1973), 173.
- IX. B.M. Culbertson, US Pat. 3498981 (1970), CA: 73, 35416Z (1970);
- X. L.H. Von Euler, R.I. Rubin and R.E. Hands Chunacher, J. Biol. Chem. 238, (1970), 2464.
- XI. B. Mylari, M. Miller, H. J. Howes, S. Figdor, J. Lynch, R. Koch. J.Med. Chem, 20, (1977), 475.
- XII. T. Gucky, J.soluka, M.Malon and I. Frysova, J. Heterocyclic communications, 9, 5 (2003), 437.
- XIII. H. Neunhoeffer, B. Klein- Cullnann, Liebigs. Ann. chem. (1992), 1271.
- XIV. L. saniere, M. schmitt, N. Pellengrini, J. Bour guignon, J. Heterocycles, 55, (2001), 671.
- XV. O. Repic, P.G. Maltner and M. J. Shapiro, J. Heterocycl. Chem. 19, (1982), 1201.

Received on March 7, 2019.